基于AMESim的充液管路水锤特性及被动控制仿真研究

张亚东, 吴猛猛, 赵冬冬

装备环境工程 ›› 2025, Vol. 22 ›› Issue (9) : 59-67.

PDF(5600 KB)
PDF(5600 KB)
装备环境工程 ›› 2025, Vol. 22 ›› Issue (9) : 59-67. DOI: 10.7643/ issn.1672-9242.2025.09.007
专题——舰船装备可靠性

基于AMESim的充液管路水锤特性及被动控制仿真研究

  • 张亚东, 吴猛猛*, 赵冬冬
作者信息 +

Water Hammer Characteristics and Passive Control Simulation of Liquid Filling Pipeline Based on AMESim

  • ZHANG Yadong, WU Mengmeng*, ZHAO Dongdong
Author information +
文章历史 +

摘要

目的 建立船舶充液管路水锤特性仿真模型,对管中水锤特性进行仿真研究。方法 基于AMESim软件,使用HL040管路模型,同时考虑管路中的容性、阻性、惯性以及流体传输的波动效应进行仿真。结果 在不同输水初压下,压力脉动峰值随管线长度的增加而增加,0.8 MPa初压时,DN25管道10 m管线长度压力峰值比2 m管线长度的峰值高出0.15 MPa,管路公称直径越大,增幅越明显。在相同输水初压下,压力脉动峰值随管径的增加而减小,0.8 MPa初压时,10 m长的DN25管道压力峰值为0.3 MPa,而DN15管道压力峰值为0.5 MPa。管道震荡频率与管线长度密切相关,长管道的震荡频率低于短管,而管道震荡稳定时间则受多种管道参数复合影响。结论 管道参数对水锤效应的影响规律是复杂的,只有充分分析管路系统,合理设计管道参数,才能达到防护水锤的目的。

Abstract

The work aims to establish a simulation model of water hammer characteristics in ship filling pipelines and conduct simulation research on the water hammer characteristics in pipelines. Based on AMESim software, the HL040 pipeline model was used to simulate the capacitance, resistance, inertia, and fluctuation effects of fluid transmission in the pipeline. The peak pressure pulsation increased with the length of the pipeline under different initial pressures. At an initial pressure of 0.8 MPa, the peak pressure of the DN25 pipeline with a length of 10 meters was 0.15 MPa higher than that with a length of 2 meters. The larger the nominal diameter of the pipeline, the more significant the increase. At the same initial water pressure, the peak pressure fluctuation decreased with the increase of pipe diameter. At an initial pressure of 0.8 MPa, the peak pressure of the 10 meter long DN25 pipeline was 0.3 MPa, while the peak pressure of the DN15 pipeline was 0.5 MPa. The frequency of pipeline oscillation was closely related to the length of the pipeline. The oscillation frequency of long pipelines was lower than that of short pipelines, while the stability time of pipeline oscillation was affected by multiple pipeline parameters. Overall, the impact of pipeline parameters on water hammer effect is complex. Only by fully analyzing the pipeline system and designing pipeline parameters reasonably can the purpose of protecting against water hammer be achieved.

关键词

船舶管路 / 充液管路 / 管道参数 / 调水压力 / 水锤特性 / 减振降噪

Key words

ship pipeline / liquid filling pipeline / pipeline parameters / adjusting water pressure / water hammer characteristics / vibration and noise reduction

引用本文

导出引用
张亚东, 吴猛猛, 赵冬冬. 基于AMESim的充液管路水锤特性及被动控制仿真研究[J]. 装备环境工程. 2025, 22(9): 59-67 https://doi.org/10.7643/ issn.1672-9242.2025.09.007
ZHANG Yadong, WU Mengmeng*, ZHAO Dongdong. Water Hammer Characteristics and Passive Control Simulation of Liquid Filling Pipeline Based on AMESim[J]. Equipment Environmental Engineering. 2025, 22(9): 59-67 https://doi.org/10.7643/ issn.1672-9242.2025.09.007
中图分类号: TL375.2   

参考文献

[1] 桑勇, 邵利来, 段富海. 基于AMESim液压系统管路动态特性的研究[J]. 液压气动与密封, 2018, 38(2): 16-21.
SANG Y, SHAO L L, DUAN F H.The Research on Pipeline Dynamic Characteristics of Hydraulic System Based on AMESim[J]. Hydraulics Pneumatics & Seals, 2018, 38(2): 16-21.
[2] 蔡标华. 舰船首尾移水系统水锤特性仿真与试验[J]. 舰船科学技术, 2011, 33(9): 52-55.
CAI B H.The Water Hammer Characteristic Simulation and Test Study in Warship System Pipeline[J]. Ship Science and Technology, 2011, 33(9): 52-55.
[3] 丁若茜. 水锤作用下的船舶管路瞬变流流动特性研究[D]. 镇江: 江苏科技大学, 2023.
DING R X.Study on Transient Flow Characteristics of Ship Pipeline under the Action of Water Hammer[D]. Zhenjiang: Jiangsu University of Science and Technology, 2023.
[4] 祁少云. 船舶管系“水锤效应”成因分析及消除措施[J]. 广船科技, 2020, 40(1): 26-29.
QI S Y.Cause Analysis and Elimination Measures of “Water Hammer Effect” in Ship Piping Systems[J]. GSI Shipbuilding Technology, 2020, 40(1): 26-29.
[5] 刘梅. 船舶轮机管路系统水锤效应产生的原因、危害及解决方案[J]. 现代制造技术与装备, 2020, 56(11): 172-173.
LIU M.Causes, Harms and Solutions of Water Hammer Effect in Marine Turbine Pipeline System[J]. Modern Manufacturing Technology and Equipment, 2020, 56(11): 172-173.
[6] WYLIE E B, STREETER V L.Fluid Transients[M]. New York: McGraw-Hill International Book Company, 1978.
[7] WOOD D J.Waterhammer Analysis—Essential and Easy (and Efficient)[J]. Journal of Environmental Engineering, 2005, 131(8): 1123-1131.
[8] GALLY M, GU¨NEY M, RIEUTORD E. An Investigation of Pressure Transients in Viscoelastic Pipes[J]. Journal of Fluids Engineering, 1979, 101(4): 495-499.
[9] WANG L T, YUE X Y, CHONG D T, et al.Experimental Investigation on the Phenomenon of Steam Condensation Induced Water Hammer in a Horizontal Pipe[J]. Experimental Thermal and Fluid Science, 2018, 91: 451-458.
[10] CHERN M J, WANG C C.Control of Volumetric Flow-Rate of Ball Valve Using V-Port[J]. Journal of Fluids Engineering, 2004, 126(3): 471-481.
[11] 任玉莹. 长距离大口径多起伏重力输水工程的水锤防护研究[J]. 黑龙江水利科技, 2022, 50(5): 1-6.
REN Y Y.Research on Water Hammer Protection of Long Distance, Large Diameter and Heaving Gravity Water Conveyance Project[J]. Heilongjiang Hydraulic Science and Technology, 2022, 50(5): 1-6.
[12] 周领, 陆燕清. 排水管道瞬变流的SWMM模拟能力研究[J]. 中国给水排水, 2022, 38(5): 108-115.
ZHOU L, LU Y Q.SWMM Simulation Capability for Transient Flow in Drainage Pipe[J]. China Water & Wastewater, 2022, 38(5): 108-115.
[13] LIN Z, MA C J, XU H G, et al.Numerical and Experimental Studies on Hydrodynamic Characteristics of Sleeve Regulating Valves[J]. Flow Measurement and Instrumentation, 2017, 53: 279-285.
[14] CUI B L, LIN Z, ZHU Z C, et al.Influence of Opening and Closing Process of Ball Valve on External Performance and Internal Flow Characteristics[J]. Experimental Thermal and Fluid Science, 2017, 80: 193-202.
[15] 吴震. 某长距离低扬程输水工程空气阀调压室与空气阀的联合水锤防护研究[J]. 水电能源科学, 2023, 41(7): 123-126.
WU Z.Research on Combined Water Hammer Protection of Air-Valve Surge Tank and Air Valve in Low-Lift and Long Distance Water Delivery Project[J]. Water Resources and Power, 2023, 41(7): 123-126.
[16] 汪怡然, 俞晓东, 石林, 等. 输水管道含沙水锤模型及特性研究[J]. 水利学报, 2022, 53(8): 984-990.
WANG Y R, YU X D, SHI L, et al.Models and Characteristics of Sand-Contained Water Hammer in Water Transfer Conduit[J]. Journal of Hydraulic Engineering, 2022, 53(8): 984-990.
[17] 费祥俊, 吴保生. 黄河下游高含沙水流基本特性与输沙能力[J]. 水利水电技术, 2015, 46(6): 59-66.
FEI X J, WU B S.Basic Characteristics and Sediment Transport Capacity of Hyper Concentrated Flow of Lower Yellow River[J]. Water Resources and Hydropower Engineering, 2015, 46(6): 59-66.
[18] 李涛, 杨斌, 张建波, 等. 基于AMESim的飞机液压能源系统优先阀动态特性分析[J]. 液压与气动, 2016, 40(11): 98-103.
LI T, YANG B, ZHANG J B, et al.Analysis of Dynamic Performance Based on AMESim for Aircraft Hydraulic System Priority Valve[J]. Chinese Hydraulics & Pneumatics, 2016, 40(11): 98-103.
[19] 吴芳婷. 水锤防护计算在输水管道工程施工中的技术分析[J]. 黑龙江水利科技, 2025, 53(6): 119-122.
WU F T.Technical Analysis of Water Hammer Protection Calculation in Construction of Water Transmission Pipeline Engineering[J]. Heilongjiang Hydraulic Science and Technology, 2025, 53(6): 119-122.
[20] 程浩铭. 高层建筑给排水系统中水锤效应的数值模拟与防护措施研究[J]. 建材世界, 2025, 46(3): 95-99.
CHENG H M.Numerical Simulation and Protective Measures Research on Water Hammer Effect in the Water Supply and Drainage System of High-Rise Buildings[J]. The World of Building Materials, 2025, 46(3): 95-99.
[21] 黄智鑫, 张道法, 闻锐, 等. 气垫式调压室特征参数对水电站引水系统水锤防护效果的影响研究[J]. 西北水电, 2025(2): 86-93.
HUANG Z X, ZHANG D F, WEN R, et al.Study on the Influence of the Values of Characteristic Parameters of the Air Cushion Surge Chamber on the Water Hammer Protection Effect of the Water Diversion System of a Hydropower Station[J]. Northwest Hydropower, 2025(2): 86-93.
[22] 袁丽贤, 申丽霞, 吴建华, 等. 长距离高落差缓爬坡供水工程水锤防护研究[J]. 水电能源科学, 2025, 43(6): 115-119.
YUAN L X, SHEN L X, WU J H, et al.Research on Water Hammer Protection of Long-Distance High-Drop Gentle Slope Water Supply Project[J]. Water Resources and Power, 2025, 43(6): 115-119.
[23] 王艳. 基于瞬变流特性的船舶管网泄漏检测关键技术研究[D]. 重庆: 重庆交通大学, 2021.
WANG Y.Research on Key Technologies of Ship Pipe Network Leakage Detection Based on Transient Flow Characteristics[D]. Chongqing: Chongqing Jiaotong University, 2021.
[24] 梁兴, 王云龙, 崔世杰, 等. 不同倾斜度下管道充水特性分析[J]. 水电能源科学, 2024, 42(9): 60-62.
LIANG X, WANG Y L, CUI S J, et al.Analysis of Water Filling Characteristics of Pipeline under Different Inclination[J]. Water Resources and Power, 2024, 42(9): 60-62.
[25] 黎泽松, 秦明皇, 王汶宇, 等. 基于AMESim的双液压缸系统优化仿真[J]. 工程与试验, 2025, 65(2): 50-52.
LI Z S, QIN M H, WANG W Y, et al.Optimization Simulation of Dual Hydraulic Cylinder System Based on AMESim[J]. Engineering & Test, 2025, 65(2): 50-52.
[26] 张亚东, 吴猛猛, 赵冬冬. 船舶压力管路瞬变流特性研究[J]. 机床与液压, 2023, 51(10): 42-48.
ZHANG Y D, WU M M, ZHAO D D.Research on Transient Flow Characteristics of Ship Pressure Pipeline[J]. Machine Tool & Hydraulics, 2023, 51(10): 42-48.

PDF(5600 KB)

Accesses

Citation

Detail

段落导航
相关文章

/